NEUROSPHERES FOR SPECIES-SPECIFIC, MEDIUM-THROUGHPUT ANALYSES OF DEVELOPMENTAL NEUROTOXICITY (DNT)

Univ.-Prof. Dr. med. Ellen Fritsche
Paris, November 5th 2018
Developmental Neurotoxicity (DNT)

OECD TG 426
U.S. EPA OPPTS 870.6300

- Duration: approx. 1 year
- Costs: approx. € 1 Mio
- Animals: approx. 1.400
- Uncertainties in their methodology, evaluation, and regulation
- Species-specificities

Fritsche et al. Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. 2018 TAAP 354:3-6.

Tsuji & Crofton Developmental neurotoxicity guideline study: Issues with methodology, evaluation and regulation Cong Anomal 2012
Studying Species-Specificities in DNT

Primary Neural Progenitor Cells (NPCs) for Species-specific evaluations

Culture as 3D Neurospheres

- Molecular equipment
- Cellular function
- Responses to compounds
The 'Neurosphere Assay'

BrdU = Bromodesoxyuridine

Migration

Assessment of Viability

Differentiation

Day 0

Day 3

Proliferation
Genomic Analyses of Primary NPC from Different Species

Microarray analyses > 2-fold, p<0.01:

Masjosthusmann et al. TAAP 2018
Cytoscape plugin ClueGO v2.2.5
Bindea et al., Bioinformatics, 2009

Overrepresentation Analysis of hNPC

Masjosthusmann et al. TAAP 2018
Overrepresentation Analyses

Species Comparison

<table>
<thead>
<tr>
<th></th>
<th># of Processes (% Human)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-Mouse</td>
<td>122 (78)</td>
</tr>
<tr>
<td>Human-Rat</td>
<td>98 (63)</td>
</tr>
<tr>
<td>All Species</td>
<td>90 (58)</td>
</tr>
</tbody>
</table>

Masjosthusmann et al. TAAP 2018

Cytoscape plugin ClueGO v2.2.5, Bindea et al., Bioinformatics, 2009
Test Compounds

<table>
<thead>
<tr>
<th>Positive Compounds</th>
<th>Test compounds</th>
<th>Negative Compounds</th>
<th>Test compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staurosporin</td>
<td></td>
<td>Ibuprofen</td>
<td></td>
</tr>
<tr>
<td>Retinoic Acid</td>
<td></td>
<td>Acetaminophen</td>
<td></td>
</tr>
<tr>
<td>Methylmercurychloride</td>
<td></td>
<td>Captopril</td>
<td></td>
</tr>
<tr>
<td>Sodium Arsenite</td>
<td></td>
<td>Penicillin G sodium</td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td></td>
<td>Sodium glutamate</td>
<td></td>
</tr>
<tr>
<td>Dichlorodiphenyltrichloroethan</td>
<td></td>
<td>Diethyleneglycol</td>
<td></td>
</tr>
<tr>
<td>Tetrabromobisphenol A</td>
<td></td>
<td>Mannitol</td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td></td>
<td>Saccharin</td>
<td></td>
</tr>
<tr>
<td>Dibutyl phthalate</td>
<td></td>
<td>Sorbitol</td>
<td></td>
</tr>
<tr>
<td>Perfluorooctanoic acid</td>
<td></td>
<td>Warfarin</td>
<td></td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylazoxymethanol acetate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Valproate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketamin hydrochlorid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Fluoride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodiphenyl dichloroethene</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TH-dependent Oligodendrogeneration

Oligodendrocyte Formation

<table>
<thead>
<tr>
<th>Condition</th>
<th>WT mNPC</th>
<th>THR α KO mNPC</th>
<th>THR β KO mNPC</th>
<th>hNPC</th>
<th>rNPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3 nM T3</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Oligodendrocyte Maturation

<table>
<thead>
<tr>
<th>Condition</th>
<th>MOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.0</td>
</tr>
<tr>
<td>3 nM T3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

MOG = Myelin Oligodendrocyte Glycoprotein; MBP = Myelin Basic Protein

Dach et al. Sci Rep 2017
Human Oligodendrocyte Maturation Quotient: Test for human TH disruption

Oligodendrocyte maturation quotient: $Q_M = \frac{MBP \text{ or } Mog \text{ expression}}{\% \text{ oligodendrocytes}}$

Singh et al. JOC 2016

Dach et al. Sci Rep 2017
Adverse Outcome Pathways

Putative AOP: Reduced binding of TH to NPC THR causes DNT

Chemical

Molecular interaction
- Decreased TH transport across membranes
- Inhibition of cellular TH metabolism
- Blockade of TR binding site for TH

Molecular response

Cellular response
- Oligodendrocyte formation & maturation
- Oligodendrocyte maturation

Cellular response

Organ response
- Reduced myelin
- Alterations in the white matter

Organism response
- Mental retardation

References:

Dach, Klose et al. in preparation
OECD-EFSA/DK-EPA projects: DNT in vitro Testing Battery

- UKN1 hiPSC → NPC
- NPC1 - NPC proliferation
- ReNCX - NPC proliferation
- ReNCX - NPC apoptosis
- UKN2 MINC assay
- NCC migration
- NPC2 - NPC migration
- NPC2/3 - Neuronal migration
- NPC4/UKN4 - Neuronal morphol (early&late)
- Neuronal network formation
- NPC3 – NPC Neurons
- UKN4 – Dopa-ergic differentiation
- NPC5/6 – NPC (TH) Oligodendrocyt
- Neuronal network formation
- Neuronal maturation
- Neuronal subtype differentiation
- Neuronal network formation

from: Fritsche OECD 2016
Acknowledgements

Dr. Ines Lauria
Dr. Julia Tigges
Dr. Stefan Masjosthusmann
Dr. Janette Goniewiecha
Dr. Marta Barenys
Dr. Katharina Dach
Dr. Martin Schmuck
Dr. Maxi Hofrichter
Laura Nimtz PhD cand
Jördis Klose PhD cand
Mohammed Elgamal, PhD cand
Eike Keßel, PhD cand
Farina Bendt
Ulrike Hübenthal
Gaby Brockerhoff
Kevin Bielec
Saskia Wuttke
Kristina Bartmann
Anna Wellenberg
Britta Kühne
Barbara Petzuch
Anastasia Geldaris
Nina Pogereltseva

VIP/VIP+ – Validation of innovative products

European Food Safety Authority

CERST NRW

Leibniz-Institut für Umwelt- und Medizinische Forschung