Input of proteomics in nanoparticles toxicology: the example of macrophages responses to mineral nanoparticles

CEA-Grenoble, iRTSV/LCBM, CNRS UMR 5249
Thierry Rabilloud
Catherine Aude-Garcia
Véronique Collin-Faure

CEA-Grenoble
INAC/LAN
Marie Carrière
Lucie Armand
Jean-Luc Ravanat

INSERM U996
Chatenay-Malabry
Marc Pallardy
Natacha Szely
Saadia Kerdine-Römer

Collaborations
LSMBO, CNRS UMR7178, Strasbourg
Alain Van Dorsselaer
Jean-Marc Strub
Hélène Diemer

LFP, CEA-Saclay
Adèle Gerdil
Nathalie Herlin

EFS Alsace
Fabienne Proamer
Anita Michel

Illustrations
The challenge of transposing lab. toxicology results into real life

Cross-toxicities
- synergistic toxicities without direct interactions

Gold standard: lab animals (healthy life)

Combinatorial explosion of interfering factors (lifestyle, prof. etc...)

Response mechanisms => vulnerability points => sorting cross toxicities

Role of high content in vitro approaches
Macrophages: first line sentinels, immunity effectors and final scavengers

Macrophages

- Phagocytosis, destruction of pathogens and abnormal cells
- Antigen presentation
- Cytokinetic signalling
 - Scavenging of toxic particles (e.g. altered LDL)
 - Inflammation
 - Tissue healing
The first nanoparticle investigated: ZnO

ZnO (30,000 tons/year ww) used in sunscreens, biocidal, UV protection

Parameters:
- primary particle size <50nm
- agglomerate size in culture medium ca. 200-250 nm
- moderate toxicity (LD20 ca. 10 µg/ml)

ZnO: causative agent of the metal fume fever (at doses >50mg/m³ air)

50mg/m³ air => 10 ppm in our culture system
Proteomic analysis of J774 cells in response to ZnO nanoparticles
Global analysis of proteomic results

Pathway analysis (DAVID)

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
<th>%</th>
<th>PValue</th>
<th>FDR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mitochondrion</td>
<td>25</td>
<td>28.735632183908045</td>
<td>9.954823481423635E-8</td>
<td>1.2477333649618672E-4</td>
</tr>
<tr>
<td>oxidation-reduction process</td>
<td>14</td>
<td>16.091954022988507</td>
<td>1.3482060985362513E-5</td>
<td>0.020214700449561196</td>
</tr>
<tr>
<td>Proteasome</td>
<td>7</td>
<td>8.045977011494253</td>
<td>6.946003753277891E-8</td>
<td>8.396138324595626E-5</td>
</tr>
<tr>
<td>IPR020471:Aldo/keto reductase subgroup</td>
<td>3</td>
<td>3.4482758620689653</td>
<td>0.0019457684794739808</td>
<td>2.4777230777426995</td>
</tr>
<tr>
<td>IPR018170:Aldo/keto reductase, conserved site</td>
<td>3</td>
<td>3.4482758620689653</td>
<td>0.0021993036613896654</td>
<td>2.7963687679816163</td>
</tr>
<tr>
<td>mmu00040:Pentose and glucuronate interconversions</td>
<td>4</td>
<td>4.597701149425287</td>
<td>0.002530999149678118</td>
<td>2.9975778438366407</td>
</tr>
<tr>
<td>actin cytoskeleton</td>
<td>7</td>
<td>8.045977011494253</td>
<td>2.07905452181233E-4</td>
<td>0.2602757505639744</td>
</tr>
<tr>
<td>cell redox homeostasis</td>
<td>3</td>
<td>3.4482758620689653</td>
<td>0.036726819215152105</td>
<td>42.941521474822</td>
</tr>
<tr>
<td>Carbon metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0050727~regulation of inflammatory response</td>
<td>3</td>
<td>3.4482758620689653</td>
<td>0.0018424469208165352</td>
<td>2.190359110154294</td>
</tr>
<tr>
<td>mmu04114:Oocyte meiosis</td>
<td>4</td>
<td>4.597701149425287</td>
<td>0.05149629266848405</td>
<td>47.00276175043139</td>
</tr>
<tr>
<td>DNA repair</td>
<td>3</td>
<td>3.4482758620689653</td>
<td>0.28570251351712095</td>
<td>98.28710663407126</td>
</tr>
</tbody>
</table>

False positive rate

![False positive rate graph](image)
Changes in the actin cytoskeleton

Control cells

ZnO treated

RhoGDI1

RhoGDI2

ctl Zn++ ZnO ZrO₂
Zinc genotoxicity: the genotoxicity of a non-Fenton metal
The activities are expressed in units/mg protein, the unit being defined as 1µmole of substrate converted per minute.
The methylglyoxal pathway in zinc toxicity

=> an indirect and composite genotoxic mechanism (DNA Pol \(\tau \) and \(\kappa \))

=> toward a proteomics-driven study of nanoparticles cross-toxic effects
The second nanoparticle investigated: amorphous silica

SiO₂ (100,000 tons/year FR) used in abrasives, moulding, tyres etc...

Parameters:
- primary particle size <20nm
- agglomerate size in culture medium ca. 100-200 nm
- selective toxicity for macrophages (LD20 ca. 20 µg/ml)

crystalline silica: causative agent of silicosis. Amorphous silica less toxic
The mammalian body immune cells: a wide range of killers

RAW264.7

MPC11
selective silica toxicity toward macrophages

correlation with phagocytic capacity
Different proteomic responses, even at equal effect doses
(12/99 in common between the two cell lines)

myd88: TLR signalling ; in35: interferon signalling ; cab39 PKA signalling (+ reg.)
Detoxification proteins

glyoxalase activity: µmol/min/mg prot

<table>
<thead>
<tr>
<th></th>
<th>Ctrl</th>
<th>Silica 10µg/ml</th>
<th>Silica 20µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyox. I</td>
<td>364</td>
<td>331 (p = 0.01)</td>
<td>295 (p = 0.04)</td>
</tr>
</tbody>
</table>

Notes:
- DNP H1 (D3)
- Glyox. I (H9)
Cross-toxic effects

RAW 264.7

MPC11

methyglyoxal (glyox I)

stylene oxide (dnph 1)
Conclusion: proteomics can do the job

- Proteomics underscores biologically relevant responses at non toxic doses

- Proteomics can sort different responses even if tox. parameters are similar

- Proteomics is able to underscore possible cross-toxicities

Full exploitation of proteomics data require functional validation